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A System Identification Technique Based on the Random

Decrement Signatures Part I: Theory and Simulation

Nabih E. Bedewi

Jackson C. S. Yang

Identification of the system parameters of a randomly excited

structure may be treated using a variety of statistical tech-

niques. Of all these techniques, the Random Decrement is uni-

que in that it provides the homogeneous component of the

system response. Using this quality, a system identification

technique was developed based on a least-squares fit of the

signatures to estimate the mass, damping, and stiffness

matrices of a linear randomly excited system. In this part of

the paper the mathematics of the technique is presented in

addition to the results of computer simulations conducted to

demonstrate the prediction of the response of the system and

the random forcing function initially introduced to excite

the system. Part II of the paper presents the results of an

experiment conducted on an offshore platform scale model to

verify the validity of the technique and to demonstrate its

application in damage detection.

INTRODUCTION

In general, all system identification techniques begin by assuming a form for

the equations describing the system, then attempt to identify the unknown parameters

in that assumed system through prior knowledge of the actual response, and sometimes

the input as well. For linear systems, the identification process could be conducted

in two different ways depending on the available information. To describe the two

methods, consider a multidegree-of-freedom system having the following set of dif-

ferential equations:

[MI _ + [KI x = F (1)

where X is the response vector and F is the input loading vector. The response vec-

tor may further be viewed as the sum of the homogeneous solution vector _ and the
particular solution vector X , i.e.

P

X = X. + X (2)
n P
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The first way of identifying the system in Equation (i) is to measure the input
into the system, F, and the response of the system, X. Then through the use of a

curve fitting technique, matrices [M] and [K] may be identified [14,15]. The disad-

vantage of this method is that the input must either be of a type that could be

measured, or it must be deliberately introduced into the system. Furthermore, if the

system has N degrees-of-freedom and only M locations are monitored, where M < N,

these monitored locations must be selected specifically to include all external

loads into the system. Therefore, this method is impractical in applications where

the system is naturally excited, such as offshore structures impacted by wave

motion, and flight vehicles excited by turbulent air flow.

The other approach for identifying the system parameters is through the use of

the system response only [2,7,8,9,12]. This leads to the identification of the

eigenvalues and eigenvectors of Equation (i) as opposed to the mass and stiffness
matrices.

Substituting Equation (2) into Equation (i) yields

[M] (_n + Xp) + [K] (X_n + X ) = FP

which may be separated into two independent equations, namely

[M] X + [K] X = F (3)
P P

Equations (3) and (4) indicate that if F is not known, the system parameters may

not be identified unless the homogeneous and particular solutions are separated. In

practice, however, if the input spectral density is relatively flat over the range

of the system frequencies, the ratios of the responses x.(t) at the different loca-
l

tions are taken in the frequency domain thus yielding the eigenvalues and the eigen-

vectors of Equation (4). If, on the other hand, the input spectral density has some

mild fluctuations over the frequency range of the system, then taking the ratios of

tile responses could yield erroneous eigenvectors. In addition, if the system exhi-

bits some damping, the modal damping ratios may not be identified correctly. This is

mainly due to the fact that the frequency content of the particular component of the

response may vary considerably at different locations in the system.

These problems may be overcome by employing the Random Decrement (Randomdec)

and cross-Random Decrement (cross-Randomdec) techniques [3,4,5,6,10,11,13].

Given the response vector X, the Randomdec and corresponding cross-Randomdec signa-

tures are calculated. Based on the results obtained in reference [i], the signatures

should be interpreted as the homogeneous components of the response, namely _.

With this being the case, the eigenvalues and eigenvectors of Equation (4) ma_ be

estimated accurately. The biggest advantage of this method is that the response need

not be measured at the points where external loads are applied. Furthermore, modal

damping may be evaluated accurately from the Randomdec signatures either in the time

domain using the logarithmic decrement or in the frequency domain using the half

power point (curve fitting could generally be used for close modes in both domains).

Although modal parameters might be sufficient for many applications, it is some-

times desirable, if not necesssary to have information reflecting the actual mass,
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damping, and stiffness of the system. This could be the case in systems where

damping is not proportional, or when the model is required for damage detection in

which elements in the original matrices pertain to actual locations in the system. A

technique is therefore proposed to estimate the [M], [C], [K] matrices of a linear

system with the use of the Random Decrement technique.

PROPOSED SYSTEM IDENTIFICATION TECHNIQUE

Consider the linear set of equations

[M] X + [C] X + [K] X = F (5)

where [M] and [K] are real symmetric matrics and [C] is a nonproportional , real,

symmetric damping matrix. Introducing matrix Hpi j and vector Zpj , where

Hli j = [M] ZIj =

H2i j = [C] Z2j =

H31 j = [K] Z3j = X

Equations (5) may be rewritten in the form

M 3

_ Hpij Z = F
j=l p=l pj I

i = 1,2,...,M (6)

where M is the number of degrees-of-freedom in the system, and F. symbolizes ele-
ment i of vector F. i

If Z and F are composed of N discrete points in time, there should exist one

equationP_imilarito Equation (6) for every point k, where k = 1,2,...,N . Therefore,

for one time step k

M 3
= i = 1,2,...,M

_ Hpij Zpjk Fik k = 1,2, ,N
j=l p=l "'"

(7)

To identify the three matrices H i" a least squares scheme will be employed to

obtain the best estimate for H i 4 through minimizing the difference between the left
and right sides of Equation (7_. J Therefore, defining an error index e.. for each

equation i at every time step k, Equation (7) may be rearranged as fol_ws :
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M 3 i = 1 2,...,M
- _ H Z =

Fik j_l= p--i pij pjk eik k = 1,2,...,N
(8)

where H is the best estimate for H . ..

Add_ij the sum of the squares of _dation (8), the total error E in the system

may be defined as

M N M 3 2 M N 2

i I [ Fie- I _ _ Z ] = _ i e ik
i=l k=l j=l p=l pij pjk i= 1 k= I

= E (9)

To minimize the error with respect to H . , the slope of Equation (9) relative

to all the unknown parameters must be set t_i_ero, i.e.

DE

pij

-- 0

p = 1,2,3

i = 1,2,...,M

j = 1,2,...,M

Therefore, taking the partial derivative of E with respect to Hpi j

and noting that _pij = Hpji (symmetry condition), the following two equations result

N M 3

DE - 2 _ Zpik [ -nkl _ _qin Zqnk ] = 0 (10a)
_Hpij k=l Fik = q=l

for i = j , and

DE

_Hpij

N M 3

2 _ { Zpj k [ Fie- _ _ H Z
k=l n=l q=l qin qnk

+

M 3

Zpik [ Fjk - _ _ H Z ]} = 0
n=l q=l qin qnk

(lOb)

for i * j •

Equations (10a) and (10b) form a set of M(M + 1)3/2 linear simultaneous

equations which may be solved either in closed form or by iteration. To use the

latter, the partial derivatives must be taken of Equations (10a) and (10b) with

respect to all the unknown parameters resulting in a constant Jacobian matrix,

namely
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_2E N
= 2 _ Zpj k Zglk

_Hpi j _Hghl k=I

for i = j , and

_2E N

= 2 [ [ Zpj k Zglk + Zpi k Zghk ]

_Hpij_Hghl k =I

for i * j •

To obtain a solution in closed form, Equations (lOa) and (lOb) should be rewrit-

ten in the form

N M 3 N

I -_ll qin Zplk Zqnk --I Zk= 1 n= 1 q k= 1 pik Fik
(lla)

for i = j , and

N M 3 N

[ q_l[Hqin ZpJk Zqnk + HqJn Zpik Zqnk] =k[l [ Zpjk Flk + Zpik Fjk]k=l n=l --

(lib)

for i * j, where the right side of Equations (lla) and (llb) contains the constant

terms while the left side is a constant coefficient matrix premultiplied by a vector

composed of the M(M + 1)3/2 unknown system parameters. This may be represented as

follows:

[G] h = _ (12)

These equations can now be solved using any conventional linear equation solver.

It is apparent by inspection of Equation (12) that when the Random

Decrement technique is applied, F reduces to zero , thus resulting in

[G] h = {0}

or, in expanded form
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gl,l

g2,1

gS-l,l

gB, i

gl,2 ...... gl, B-I

• • • • • • • • • • • • •

gl,B

g2,

............. g_-l, BgB,2 ....... gs, B-I gB, B

rhI
h
2

h_- 1

h

0

0

I
0 a

o)
f

(13)

where _ = M(M + 1)3/2. Equations (13) are in homogeneous form and therefore do not

possess a unique solution for h.

On the other hand, if the rank of [G] is 8 - i, and if one of the unknown para-

meters in h were indeed known, then a unique solution would exist• This may be

proved by rearranging Equation (13) as follows :

gl,l gl,2 ...... gl, B-i

g2 1 .......... g2 _-1

1

2

hs- I

Igl, Bh_

g2, _h_

-gB-l, Bh

(14)

where h^ was assumed to be the known parameter for convenience. Equation (14) may be

set up _or any known h_ by simply eliminating the ith row of [G] (since the partial
derivative with respecE to a constant is zero) then moving the ith column to the

right side and multiplying it by the scalar -h.• The only condition for selecting

h i is that the ith row must increase the rank gf the system• With the aforemen-

tioned steps adhered to, Equation (14) will definitely have a unique solution•
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If the rank of matrix [G] is less than 8 - 1 , the solution of Equation (13)
becomesmore difficult to obtain. The linear dependencyof the equations forming
matrix [G] wlll require a greater effort to be eliminated, and, more parameters of
vector h wlll have to be assumed. Therefore, if the rank is _ - 2, two equations
from Equations (13) must be removedand two parameters of vector h must be assumed.
Calculating two or more parameters in manyphysical systems Is extremely difficult,
if not impossible. The examples used in the remainder of thls paper are all of
systems wlth a rank of _ - i.

The question to be raised then is how can the value of one of the parameters be
known ?

Since h is composedof elements from the mass, damping, and stlff-ness matrices,
it Is physically immeasurable. Therefore, the best alternative would be to obtain a
good estimate. The requirement imposedon the accuracy of the estimate depends
greatly on the application for which the model is needed. If the model is to be used
for damagedetection, then knowing the absolute values of the [M], [C], [K] matrices
is not essential, but rather, the ratio of the values of the elements at different
instances in time. Therefore, assuming the order of magnitude of one of the elements
in h should suffice as long as the samevalue is used every time. On the other hand,
if the model is needed for simulation purposes, where one wishes to study the effect
of different loading conditions on the response of the system, the absolute values
are needed. In this case, the estimate for h_ may be obtained from either a finite
element model, or by performing a simple static test on the system (if physically
possible). The latter is carried out by applying a known static load at a point in
the system and measuring the deflection at the samepoint or at any other point.
These two values maythen be used to scale the entire h vector (h must be already

calculated by assuming the order of magnitude of h_). The scaling procedure may be

described by noting the static component of Equati6n (5), namely

[K] X ffi F (15)

If [K] is separated into a scalar c multiplying a matrix [K],

where [K] is the estimated stiffness matrix using the proposed method,

then Equation (15) becomes

c [K] X ffi F (16)

Since F and [K] are known (F is the force applied during the static test) the

system of equations

= F

may be solved to glve X , where

= _X
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But, the response Xi at point i in the system was measured, therefore
e maybe obtained by simply taking the ratio Xi/Xi • The value of e
may then be multiplied by the estimated mass, damping, and stiffness
matrices [M] , [C] , and [K] respectively to obtain [M], [C], and [El.

TESTS OF PROPOSED TECHNIQUE BY COMPUTER SIMULATION

To demonstrate the procedure for applying the proposed system identification

technique, and to test its accuracy, a six degree-of-freedom model of a cantilever

beam is used. Figure I shows the beam with the locations of the six points where the

response is monitored. Using a finite element model (Reference [15]), the system

matrices in Equation (5) were obtained.

6+ 5-+ 4+ 3+ 2+ I"

T

2.0" _ 2.0" _ 2.0" _ 2.0" _ 2.0" _1.75'_9C--.25"

_ _.125"6...... 5 4 3 2 1 --_

Figure i - Locations of monitored points on the cantilever beam

To distinguish between errors introduced by the system identification technique

and the errors in the Randomdec signatures, two different scenarios were conducted.

The technique was initially tested using exact free-decay response curves of the

system and then tested using actual Randomdec signatures obtained from the random

response of the system.

Case I: Exact Free-Decay Curves

A set of initial conditions was arbitrarily chosen for the six locations on the

beam. Equation (5) was then solved numerically and the response vectors X, X, and X

were recorded. The time step size was selected to insure that at least seven points

were needed to construct one cycle of the highest frequency in the system. Solving

for the eigen-values of Equation (5) the undamped natural frequencies of the system
were found to be

f

i

f2 =

f3 =

25.908 Hz f4 = 886.770 Hz

159.251Hz f5 = 1445.039 Hz

445.307 Hz f6 = 2114.293 Hz
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thus resulting in a step size of AT= 0.00007 seconds. Furthermore, the numberof
time steps had to be selected to cover at least one cycle of the lowest frequency in
the system. Therefore, 600 points were used.

One of the tests for the technique is its repeatability relative to different
fixed parameters, i.e. as elements h. through h.^ are in turn fixed. Since diagonal
terms are more reliable than off-diagonal terms in the model, this test was strictly
confined to the diagonal elements.

Equation (14) was solved eighteen times, each time fixing one of the diagonal
elements in the [M], [C], [K] matrices. The fixed value was always taken as the
actual value of the element to avoid scaling the h vector. After every evaluation
of the h vector, the errors occurring in the diagonal terms, relative to their
actual values, were calculated. Calculations were madeof the errors in the mass,
damping, and stiffness matrices as each diagonal element in the massmatrix was
fixed. Similar results were obtained as each diagonal element in the dampingand
stiffness matrices was fixed, respectively. In all the cases, the average error
occurring at every point on the beamwas evaluated.

Following a careful inspection of the errors, two conclusions were made, viz.
fixing the stiffness matrix gives better estimates of vector h than fixing the mass
and damping matrices, and , due to the large variation in the error resulting from
fixing different elements in the samematrix, the avarage value is probably a more
consistent estimate. Therefore, based on these conclusions, and noting that fixing
the stiffness matrix elements is the only case in which the average gives a better
overall estimate than the individual estimates, it is further concluded that the
best approach for estimating vector h is to take the average of the h vectors
obtained by individually fixing the stiffness diagonal elements. In doing so, the h
vectors must be scaled independently before the averaging process is carried out.
Using this procedure, the system matrices were identified. These matrices were not
identical to the actual system matrices; their validity to represent the system was
checked by comparing the reponse to the sameinput. Therefore, a randominput vec-
tor F with constant spectral density was simulated on the computer and used as input
into Equation (5). This equation was solved using the actual and the estimated
system matrices. Results were obtained for all the response points. Comparisonof
the actual and predicted responses at point i is shownin Figure 2. The responses
of the two systems comparefavourably.

Predicted Re

_._-_

i 0. I --

-0. !

0. {}00 0.005 0.010 0.01S 0.020 0.02S 0. 030 0. 036

TTME CSEC_

Figure 2 - Comparison of actual and predicted responses at point I

(system identification from actual free-decay response)
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Case II: Free-Decay Curves From Randomdec Signatures

To further evaluate the overall accuracy of the system identification technique,

the technique had to be tested by incorporating Randomdec and cross-Randomdec signa-

tures as opposed to actual free-decay response curves.

Two purely uncorrelated stationary, Gaussian, random records were used as input

forces at points 2 and 4 on the cantilever beam. Equation (5) was solved and the

response vector X recorded. Due to its high frequency content, station 6 was used as

the triggering station with a trigger level of 0.0075. Five cross-Randomdec signa-

tures (at stations i to 5), and one Randomdec signature (at station 6) were obtained

for 600 lag points and 500 averaged segments. The cross-Randomdec signature for

station i is shown in Figure 3. The first and second derivatives were then calcu-

lated for t_e six signatures using a finite difference scheme with an error on the
order of AT .

Figure 3 - Cross-Randomdec signature of time record at point 1

The procedure recommended in the previous section was used. Equation (14) was

solved six times, each time fixing one of the diagonal elements in the stiffness

matrix. KII was fixed at i000, K22 was fixed at 5000, and K33 through K66 were

fixed at i0000. In each case, a load of I0 was applied at point i and, using the

corresponding estimated stiffness matrix, the deflection at point i was calculated

(since point i is the free end of the cantilever beam). The same procedure was

followed using the actual stiffness matrix. The six h vectors were then scaled

following the procedure outlined in the previous section, averaged, and rearranged
in matrix form.

Again these matrices were not identical to the actual system matrices. To test

their validity as a simulation tool, the estimated matrices were substituted into

Equation (5). The force vector used to obtain the random records, from which the

signatures were evaluated, was used as the input. Comparison of the calculated

response versus the actual system response was obtained for all the stations.

Results at stations i and 2 are shown in Figures 4 and 5. Once more, the results

compare favourably.
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8.5-

8.8_

-8.5-

k

Predicted Response

T_ME C$[C)

Figure 4 - Comparison of actual and predicted responses at point 1

(system identlflcatln from Randomdec signatures)

6.75_

0.50_

i 8.25"

O. 88

.Predicted Response

_Ac t ua i Response

l ¢
|

V

-e'se' 1'' '' 1'' '' I' ''' 1' '''1' '' '1 ' ''I '' '1
8. 080 8.08S 8 . 010 qJ • 81 '= 8. 828 8. _2_; 0 . EJ313 0 • 83S

TIHF" (SEC)

Figure 5 - Comparison of actual and predicted responses at point 2

(system identification from Randomdec signatures)

ESTIMATING THE INPUT INTO THE SYSTEM

An interesting application arises from the system identification technique by

observing Equation (5). After estimating the mass, damping, and stiffness matrices,

if the response vector X and its derivatives are substituted back into Equation (5),
the outcome should be the force vector F.

Therefore, in a real application, the random response would be measured at

several locations in the system. The signatures would then be obtained, their deri-

vatives calculated, and Equation (14) used to estimate the [M], [C], [K] matrices

following the procedure outlined in the prevluos section. A direct substitution of

the measured response and its derivatives into Equation (5) with the estimated

matrices would result in a vector similar to the input vector. If the estimated

mass, damping, and stiffness matrices were not scaled, the outcome of Equation (5)

should be a scaled version of the input vector.
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To demonstrate this approach, the example provided in the previous section was

used. Results were obtained of the estimated input vector F versus the actual input.

Since the forces were originally applied at locations 2 and 4 on tile beam, the for-

ces at locations i, 3, 5, and 6 should be zero. These Results indicate that at the

points where the loads were applied, the estimated input functions formed good

approximations (see Figures 6 and 7). As for the unloaded points, the technique pre-

dicted forcing functions with relatively small magnitudes in comparison to the

loaded points (see Figure 8).

20 m

18-

O-

-10-

Actual Force

Predicted

-20 ' i ' I _ I ' 1 ' I ' I _ I
0.0_ 0,1302 0.084 8._38 0._08 8.0t0 8.01_ 0.014,

TIME C3EC>

Figure 6 - Comparison of actual and predicted force records

(record for location'2 - unfiltered response)

20-

B--

-2el --

-40 • j

.008

Predicted Force Record

I _ I ' 1 ' J l I ' ; l I
• 002 0 • B_4 0 . I_(_ 8 . (3138 (3 . (_ _0 _ . 131:2 B • _ I 4

T'rME ¢ _F"C )

Figure 7 - Comparison of actual and predicted force records

(record for location 4- unfiltered response)
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Predicted Force Records

_Actual Force Record

(f(t) = 0)

-28 -

-40 ' I ' I ' I ' I ' I _ I ' I
6,_1_ 8. _)82 8 . _14 8._(_ 8._8 8,0'18 8.0_12 0.814

Figure 8 - Comparison of actual and predicted force records

(records for locations 1,3,5, and 6 - unfiltered)

Care must be excercised when employing filters in this technique. If the signa-

tures are obtained after filtering the response record, the response vector X and

its derivatives must also be fitered before substitution into Equation (5) . If this

procedure is not followed, the estimated force vector F will also include the

filtered modes of the system. This may be demonstrated using the same example.

Studying the Fourier magnitude spectrums of the responses at points I and 6 and

their derivatives , it was apparent that the lowest mode is quite dominant.

Therefore, employing a high-pass filter at 80 Hz for the signatures, but not the

response vector X, the resultant estimated inputs at points 2 and 4 are shown in

Figures 9 and i0. The low mode is quite apparent in the estimated input records.

This problem could also occur when calculating signatures from velocity and acce-

leration records since they usually tend to include a larger density of the higher

frequency modes.

In addition to the aforementioned effects, the frequency content of the response

records is a major cause for the dissimilarity between the identified system matri-

ces and the actual matrices. This may be explained by considering the six degrees-

of-freedom cantilever beam. If the beam were excited by a random force with a

band-limited frequency range, where, for the sake of example, this range included

only the lowest three modes, then the identified matrices will possess information

concerning these three modes only. This would mean that the identified [M], [C],

and [K] matrices would definitely be different from the actual matrices. Therefore,

subjecting the predicted system to the actual input vector should result in a

response very similar to the measured system response, whereas a force rich in the

higher frequencies would yield different results. Hence, using the proposed tech-

nique for damage detection requires the frequency content of the input force to

always be the same.
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68--

40-

20-

0-

-28 -

-40

Predicted Force Recor

Actual Force Record

' I ' I ' I ' I _ I ' I ' I
0._I_ _._02 _._4 e,000 _.000 B,010 _._12 _,_14

T_ME (_C)

Figure 9 - Comparison of actual and predicted force records

(record for location 2 - filtered response)

20_

8-

-48 -

-08 -

0
' ] ' J ' l ' I ' I ' I ' I

080 8. 082 8 • _34 8 . QI31S 8 • 088 8.018 8 . 812 8 . 814

TTHE (_C)

Figure i0 - Comparison of actual and predicted force records

(record for location 4 - filtered record)
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CONCLUSIONS

A system identification technique was proposed based on a leastsquares fit of

Randomdec and cross-Randomdec signatures to identlfiy the mass, damping, and stiff-

ness matrices of a linear multidegree-of-freedom system. Computer simulations

carried out for a dlscretized finite element model of a cantilever beam proved the

technique to be quite effective in predicting the response of the beam for a given

frequency range of excitation. Furthermore, the proposed technique was demonstrated

to be successful in predicting the random forcing function initially introduced to

excite the system. The results of the simulation clearly indicated the importance of

filtering the response of the beam and the effect it may have on the identified

system.

NOMENCLATURE

[A]

[C]

[C]

cij

F

fi(t)

H ° °

P13

H
pij

h

hi

[K]

[K]

kij

[M]

iN]

mij

JR]

r
lj

flexibility matrix

damping matrix of multiple D.O.F. system

unscaled identified damping matrix

element lj of damping matrix [C]

input loading vector

forcing function applied at point i

system matrix to be identified

estimated system matrix

vector containing system parameters to be identified

element i of vector h

stiffness matrix of multiple D.O.F. system

unscaled identified stiffness matrix

element ij of stiffness matrix [K]

mass matrix of multiple D.O.F system

unscaled identified mass matrix

element ij of mass matrix [M]

matrix containing ratio of flexibility matrices

element ij of matrix [R]
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t

X

Xh

Xp

Xi

x(t),x(t),x(t)

zij

B

time variable

response vector of multiple D.O.F. system

homogeneous response vector

particular response vector

system response at point i

position, velocity, and acceleration of variable x

measured system response

number of system parameters to be identified

scaling factor of identified system
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